
Homework 3 Intro to Programming (Term III/2024–25)

built on 2025/05/07 at 19:18:23 due: wed may 14 @ 11:59pm

This assignment aims at solidifying your experience writing functions. In this assignment, you will
solve a number of programming puzzles and hand them in.

Be sure to read this problem set thoroughly, especially the sections related to collaboration and
the hand-in procedure.

Overview:

Problem File Name

1. aggregate.py
2. snakeoil.py
3. digit.py
4. abc.txt

Problem File Name

5. alphanum.py
6. nyctime.py
7. stylishness.py

Collaboration

We interpret collaboration very liberally. You may work with other students. However, each student
must write up and hand in his or her assignment separately. Let us repeat: You need to write your
own code. You must not look at or copy someone else’s code. You need to write up answers to written
problems individually. The fact that you can recreate the solution from memory will be taken as proof
that you actually understood it, and you may actually be interviewed about your answers.

Be sure to indicate who you have worked with (refer to the hand-in instructions).

Logistics

We’re using a script to grade your submission before any human being looks at it. Sadly, the script is
not as forgiving as we are. So, make sure you follow the instructions strictly. It’s a bad omen when the
course staff has to manually recover your file because the script doesn’t like it. Hence:

• Save your work in a file as described in the task description. This will be different for each task.
Do not save your file(s) with names other than specified.

• Before handing anything in, you should thoroughly test everything you write.

• You will upload each file to our submission site https://assn.cs.muzoo.io/ before the due
date. Please use your SKY credentials to log into the submission site. Note that you can submit
multiple times but only the latest version will be graded.

• For some task, you will be able to verify your submission online. Please do so as it checks if your
solution is gradable or not. Passing verification does not mean that your solution is correct, but,
at least, it passes our preliminary check.

• At the beginning of each of your solution files, write down the number of hours (roughly) you
spent on that particular task, and the names of the people you collaborated with as comments.
As an example, each of your files should look like this:

Assignment XX, Task YY
Name: Eye Loveprograming
Collaborators: John Nonexistent
Time Spent: 4:00 hrs

... your real program continues here ...

• The course staff is here to help. We’ll steer you toward solutions. Catch us in real-life or online
on Canvas discussion.

https://assn.cs.muzoo.io/

Homework 3 Intro to Programming

Task 1: Aggregate: Min, Mean, Median (10 points)

For this task, save your work in aggregate.py

In this problem, you’re writing functions to compute certain aggregations of three numbers that you
take as input parameters. These three numbers are floats, and you can assume that they are distinct.
Your output must be a float.

Write one function for each of the following. You’ll save them in the same file.

• a function my_min(p: float, q: float, r: float) -> float that takes 3 floating-point
numbers and returns (not print) the minimum of the three numbers.

For example, my_min(3.0,1.0,9.0) should return 1.0.

• a function my_mean(p: float, q: float, r: float) -> float that takes 3 floating-point
numbers and returns (not print) the average of the three numbers. You should recall that the
average of p, q , and r is 1

3 (p +q + r).

Hence, as an example, my_mean(3.0, 7.0, 4.0) should return 4.6666 · · · .
• a function my_med(p: float, q: float, r: float) -> float that takes 3 floating-point

numbers and returns (not print) the median of the three numbers. Remember that the median
of three numbers is the number where one other number is smaller than it and one other number
is larger than it.

For instance, my_med(4.0,1.0,5.0) should return 4.0. Also, my_med(13.0,5.0,12.0) should
return 12.0.

Special Rules: For this task, use only Boolean/math expressions and conditional statements (if-statements).
Do not use built-in functions for sorting or finding min, max, etc.

Task 2: Snake Oil (10 points)

For this task, save your work in snakeoil.py

Selling snake oil is a lucrative business. In a radical move, Company S now sells snake oil at 18 baht per
liter. However, shipping is complicated:

• For an order less than (<) 20 liters, shipping is 250 baht flat.

• For an order between 20 and 100 liters (inclusive), shipping is 10 baht/litre.

• Then, for an order over (>) 100 liters, shipping is free; additionally, you get a 1% discount.

By default when no order is made, you will not have to pay anything (e.g., price is 0 for 0 litre).

This means if you order 5 liters, you’ll pay a total of 340.0 baht. If you order 20 liters, you’ll pay 560.0
baht. If you order 200 liters, you’ll pay 3564.0 baht.

For this problem, write a function price(vol: int) -> float that takes in an order’s volume in
liters and returns the total amount this customer will have to pay.

Task 3: k-th Digit (10 points)

For this task, save your work in digit.py

For this task, you will implement a functionkthDigit(x: int, b: int, k: int) -> int that takes
as input three integers, x (x ≥ 0), b (b ≥ 2), and k, and returns the k-th digit of x counting from the right
when represented in base b. The return value must be an int.

To refresh your memory of number bases, you may find the following websites useful: http://en.
wikipedia.org/wiki/Radix and http://www.purplemath.com/modules/numbbase.htm.

As a basic example, consider the number 789 (in base 10), so

2

http://en.wikipedia.org/wiki/Radix
http://en.wikipedia.org/wiki/Radix
http://www.purplemath.com/modules/numbbase.htm

Homework 3 Intro to Programming

• kthDigit(789, 10, 0) returns 9.

• kthDigit(789, 10, 1) returns 8.

• kthDigit(789, 10, 2) returns 7.

• kthDigit(789, 10, 3) returns 0.

As another example, consider the number (987). This is (3db)16 in base 16, where b represents 11 and
d represents 13. So then:

• kthDigit(987, 16, 0) returns 11.

• kthDigit(987, 16, 1) returns 13.

• kthDigit(987, 16, 2) returns 3.

Special Rules: Use only Boolean/math expressions and conditional statements (if-statements). Do not
use built-in functions for converting integers into a string representation.

Task 4: A, B, C, D, AC (10 points)

For this task, save your work in abc.txt

In this task, you will study the following Python code and answer a few questions about it:

prints ch without starting a new line.
def pp(ch: str) -> None:

print(ch, end='')

def a():
pp('a')

def b():
pp('b')

def c():
a()
pp('c')

def d():
pp('d')
b()

def e():
c()
pp('e')
d()

For each of the following strings, write all sequence of function calls (using ofa(), b(), c(), d(), e())
that will produce the following output or say impossible:

1. bdbaac

2. aacbba

3. dbabac

4. cbaedb

5. acedba

3

Homework 3 Intro to Programming

Task 5: Call Me Maybe? (10 points)

For this task, save your work in alphanum.py

Image from code golf

To help increase memorability, business owners sometimes encode their
phone numbers as mnemonic phrases, known as phonewords. These are
alphanumeric equivalents of a phone number, which can be derived by
using the mapping of letters on the digits of a telephone keypad. Many
popular phone keypads have letters and numbers that look similar to the
figure on the right. With this mapping, we can make the following conver-
sion, for example:

• FLOWERS translates into 3569377;

• PrOGrAM translates into 7764726; and

• Battery translates into 2288379.

Your Task: You will implement a function

phoneWord2Num(word: str) -> int

that takes as input a string of length exactly 7, where each position is an
upper- or lower- case letter in the English alphabet. The function must
return an integer (of type int) representing the phone number that is the
equivalent of the input string. As an example, we would call phoneWord2Num("PrOGrAM") and expect
the integer 7764726 as the return value.

TIPS: You may wish to write a new function (generally known as a helper function because its role is
to help complete the main task at hand) that takes in one letter and returns a number corresponding
to that letter.

To implement such a helper function, you may find comfort in knowing that if letter is a single char-
acter and pattern is a string, the expression letter in pattern returns True or False indicating
whether the letter belongs in that pattern. This means:

q1 = 'a' in 'pxrt' # q1 will be False
q2 = 'x' in 'pxrt' # q2 will be True

RESTRICTIONS: You can only used Python features we have covered in this class so far. Remember
that we haven’t done iterations (for-, while- loops) or lists.

Task 6: What Time Is It? (10 points)

For this task, save your work in nyctime.py

New York is 11 hours behind Bangkok. You will write a function nycHour(bkkHour: int) -> str
that takes an integer (between 0 and 23, inclusive) representing the (current) hour in Bangkok and
returns the corresponding hour in New York City (NYC).

Bangkok time, however, is given in 24-hour time, but NYC time must be returned as a string in 12-hour
time (so the result would be between 1 and 12, inclusive, followed by either am or pmwithout any space
between them). Remember that midnight is 12am and noon is 12pm.

TIPS: The function is to return a string—printing is not the same as returning.

Here are some examples:

4

Homework 3 Intro to Programming

• nycHour(0) should return "1pm"

• nycHour(11) should return "12am"

• nycHour(23) should return "12pm"

• nycHour(17) should return "6am"

• nycHour(5) should return "6pm"

Task 7: Fancy Dinner (10 points)

For this task, save your work in stylishness.py

You and your date are trying to get a table at a super fancy restaurant. You are to write a function

got_table(you: int, date: int) -> str

that estimates your chance according to the following predictor:

The parameters you and date encode, respectively, how stylish you and your date are dressed up. The
numbers are in the range between 0 and 10 (inclusive). If either of you is very stylish (8 or higher), then
you will get a table (yes), with the exception that if either of you is very sloppy (2 or less), then you won’t
get a table (no). Otherwise, it is a maybe. The function will return "yes", "no", or "maybe".

Here are some examples:

• got_table(7, 3) should return "maybe"

• got_table(9, 4) should return "yes"

• got_table(7, 8) should return "yes"

• got_table(1, 10) should return "no"

Task 8: EXTRA: Roman Numerals (0 points)

For this task, save your work in roman.py

READ THIS BEFORE YOU ATTEMPT IT: This is an extra problem for those who want a more challeng-
ing task. It is worth 0 points on the assignment; however, you’ll earn

• bragging rights;

• a place on the course’s wall of fame;

• brownie points that may be exchanged for real points if needed at the end; and

• above all, an opportunity to practice programming.

You surely have encountered Roman numerals: I, II, III, XXII, MCMXLVI, etc. They are everywhere.
Roman numerals are represented by repeating and combing the following seven characters: I = 1,
V= 5, X= 10, L= 50, C= 100, D= 500, M= 1000. To understand how they must be composed, we borrow
the following excerpt from Dive Into Python:

• Characters are additive. I is 1, II is 2, and III is 3. VI is 6 (“5 and 1”), VII is 7, and VIII is 8.

• The tens characters (I, X, C, and M) can be repeated up to three times. At 4, you need to subtract
from the next highest fives character. You can’t represent 4 as IIII; instead, it is represented as
IV (“1 less than 5”). The number 40 is written as XL (10 less than 50), 41 as XLI, 42 as XLII, 43 as
XLIII, and then 44 as XLIV (10 less than 50, then 1 less than 5).

• Similarly, at 9, you need to subtract from the next highest tens character: 8 is VIII, but 9 is IX (1
less than 10), not VIIII (since the I character cannot be repeated four times). The number 90 is
XC, 900 is CM.

• The fives characters cannot be repeated. The number 10 is always represented as X, never as VV.
The number 100 is always C, never LL.

5

Homework 3 Intro to Programming

• Roman numerals are always written highest to lowest, and read left to right, so the order the of
characters matters very much. DC is 600; CD is a completely different number (400, 100 less than
500). CI is 101; IC is not a valid Roman numeral (because you can’t subtract 1 directly from 100;
you would need to write it as XCIX, for 10 less than 100, then 1 less than 10).

YOUR TASK: Implement a function toRoman(n: int) -> str that takes an integer n (1 ≤ n < 4,000)
and returns a string that represents the number n in Roman numerals.

Despite the complexity this problem may seem at first, there are nice (and not tedious) ways to implement
the logic to convert an integer into a Roman numeral using only features we have learned so far. You
should not write more than 30 lines of code.

6

	Aggregate: Min, Mean, Median (10 points)
	Snake Oil (10 points)
	k-th Digit (10 points)
	A, B, C, D, AC (10 points)
	Call Me Maybe? (10 points)
	What Time Is It? (10 points)
	Fancy Dinner (10 points)
	EXTRA: Roman Numerals (0 points)

