
Homework 4 Intro to Programming (Term III/2024–25)

built on 2025/05/14 at 18:34:41 due: wed may 21 @ 11:59pm

This assignment will give you practice working with loops (for and while), as well as looping logic.
In this assignment, you will solve a number of programming puzzles and hand them in.

Be sure to read this problem set thoroughly, especially the sections related to collaboration and
the hand-in procedure.

Overview:

Problem File Name

1. altsum.py
2. powerloop.py
3. draw.py
4. aloud.py

Problem File Name

5. multiplek.py
6. happy.py
7. sansprimes.py

Collaboration

We interpret collaboration very liberally. You may work with other students. However, each student
must write up and hand in his or her assignment separately. Let us repeat: You need to write your
own code. You must not look at or copy someone else’s code. You need to write up answers to written
problems individually. The fact that you can recreate the solution from memory will be taken as proof
that you actually understood it, and you may actually be interviewed about your answers.

Be sure to indicate who you have worked with (refer to the hand-in instructions).

Logistics

We’re using a script to grade your submission before any human being looks at it. Sadly, the script is
not as forgiving as we are. So, make sure you follow the instructions strictly. It’s a bad omen when the
course staff has to manually recover your file because the script doesn’t like it. Hence:

• Save your work in a file as described in the task description. This will be different for each task.
Do not save your file(s) with names other than specified.

• Before handing anything in, you should thoroughly test everything you write.

• You will upload each file to our submission site https://assn.cs.muzoo.io/ before the due
date. Please use your SKY credentials to log into the submission site. Note that you can submit
multiple times but only the latest version will be graded.

• For some task, you will be able to verify your submission online. Please do so as it checks if your
solution is gradable or not. Passing verification does not mean that your solution is correct, but,
at least, it passes our preliminary check.

• At the beginning of each of your solution files, write down the number of hours (roughly) you
spent on that particular task, and the names of the people you collaborated with as comments.
As an example, each of your files should look like this:

Assignment XX, Task YY
Name: Eye Loveprograming
Collaborators: John Nonexistent
Time Spent: 4:00 hrs

... your real program continues here ...

• The course staff is here to help. We’ll steer you toward solutions. Catch us in real-life or online
on Canvas discussion.

https://assn.cs.muzoo.io/

Homework 4 Intro to Programming

Task 1: Alternating Sum (10 points)

For this task, save your work in altsum.py

You’ll write a function altSum(lst: list[int]) -> int that takes a list of numbers and returns the
alternating sum of the numbers in the list (the operators alternate between addition and subtraction,
starting with addition). For example:

• altSum([]) returns 0.

• altSum([1,3,5,2]) returns 1 (that is, 1+3−5+2).

• altSum([7,7,7,7]) returns 14 (that is, 7+7−7+7).

• altSum([31,4,28,5,71]) returns −59 (that is, 31+4−28+5−71).

Task 2: Power Loop (10 points)

For this task, save your work in powerloop.py

You’ll implement a function powerLoop(upto: int) -> None that takes an integer parameter upto
≥ 0 and returns nothing. However, when the function is called, it will print the value of 7i mod 97—that
is, the remainder of dividing 7i by 97—for i = 0,1, ..., upto in the following format:

0 1
1 7
2 49
3 52

Notice that there will be a total of upto+1 lines, where on the i -th line, we display the value i followed
by the value of 7i mod 97, separated by a single space.

Task 3: Draw, Let’s Draw (10 points)

For this task, save your work in draw.py

Like the previous task, this task involves writing functions that take in some arguments and print to
the display (not return). For each function, you’ll draw a shape in text mode (think the old days when
there was no graphical display).

FOR BOTH SUBTASKS: It is imperative that what you print looks exactly like what’s asked of you,
without any extra spaces, nor any extra lines. It must not contain any control characters (such as a
back space, a tab, etc.)—if you have no idea what control characters are, you are probably not using it.
The grader script is comparing your answers with the modeled solutions byte for byte.

Subtask I: Implement a function triangle(k: int) -> None that takes a nonnegative integer k
denoting the size of the triangle and prints to the screen a triangle of size k.

A triangle of size k contains a total of k lines, where every line contains a total of 2k−1 characters. Each
character is either the # character or the * character.

Here are a few examples:

Subtask II: Implement a function diamond(k: int) -> None that takes a nonnegative integer k
denoting the size of the diamond and prints to the screen a diamond of size k.

A diamond of size k contains a total of 2k lines, where every line contains a total of 2k +1 characters
(each character is either a # or a *). A few examples are given in Figure 2 for you to discover the pattern.

2

Homework 4 Intro to Programming

*

Only 1 line for k = 1.

#*#

Only 2 lines for k = 2.

##*##
#***#

Only 3 lines for k = 3.

Figure 1: Examples of triangles of various sizes.

##*##
#***#
#***#
##*##

k = 2

###*###
##***##
#*****#
#*****#
##***##
###*###

k = 3

####*####
###***###
##*****##
#*******#
#*******#
##*****##
###***###
####*####

k = 4

Figure 2: Examples of diamonds of different sizes.

Remarks: Because the grader script will check your console output, you must remove any extra print
statement before submitting. Make sure your output matches with what is required EXACTLY.

Task 4: Read Aloud (10 points)

For this task, save your work in aloud.py

When we read aloud the list [1,1,1,1,4,4,4], we most likely say four 1s and three 4s, instead of
uttering each number one by one. This simple observation inspires the function you are about to im-
plement. You’re to write a function readAloud(lst: list[int]) -> list[int] that takes as input
a list of integers (positive and negative) and returns a list of integers constructed using the following
“read-aloud” method:

Consider the first number, say m. See how many times this number is repeated consecu-
tively. If it is repeated k times in a row, it gives rise to two entries in the output list: first
the number k, then the number m. (This is similar to how we say “four 2s” when we see
[2,2,2,2].) Then we move on to the next number after this run of m. Repeat the process
until every number in the list is considered.

The process is perhaps best understood by looking at a few examples:

• readAloud([]) should return []

• readAloud([1,1,1]) should return [3,1]

• readAloud([-1,2,7]) should return [1,-1,1,2,1,7]

• readAloud([3,3,8,-10,-10,-10]) should return [2,3,1,8,3,-10]

• readAloud([3,3,1,1,3,1,1]) should return [2,3,2,1,1,3,2,1]

3

Homework 4 Intro to Programming

Task 5: Multiples of K (10 points)

For this task, save your work in multiplek.py

Remember that a number n is a multiple of another number, k, only if n is divisible by k—that is, the
remainder n%k is 0.

For this task, you’ll write a function allMultiplesOfK(k: int, lst: list[int]) -> bool that
takes in an integer and a list of integers, and returns a Boolean value indicating whether all of the
numbers in the list are multiples of k.

For example:

• allMultiplesOfK(4, [1,10,20]) should return False (because 1 is not a multiple of 4).

• allMultiplesOfK(3, [81,3,24]) should return True (all are multiples of 3).

• allMultiplesOfK(11, []) should return True because it’s vacuously true that all numbers in
the input list are multiples of k.

Task 6: Happy and Sad Numbers (12 points)

For this task, save your work in happy.py

Happy numbers are a nice mathematical concept. Just as only certain numbers are prime, only cer-
tain numbers are happy—under the mathematical definition of happiness. We’ll tell you exactly what
happiness means.

The concept of happy numbers is only defined for whole numbers n ≥ 1. To test whether a number is
happy, we can follow a simple step-by-step procedure:

(1) Write that number down

(2) Stop if that number is either 1 or 4.

(3) Cross out the number you have now. Write down instead the sum of the squares of its digits.

(4) Repeat Step (2)

When you stop, if the number you have is 1, the initial number is happy. If the number you have is 4,
the initial number is sad. There are only two possible outcomes, happy or sad.

By this definition, 19 is a happy number because 12 +92 = 82, then 82 +22 = 68, then 62 +82 = 100, and
then 12 +02 +02 = 1. However, 145 is sad because 12 +42 +52 = 42, 42 +22 = 20, and 22 +02 = 4.

Subtask I: First, you’ll implement a function sumOfDigitsSquared(n: int) -> int that takes a
positive number n and returns the sum the squares of its digits. For example,

• sumOfDigitsSquared(7) should return 49

• sumOfDigitsSquared(145) should return 42 (i.e., 1**2 + 4**2 + 5**2 = 1 + 16 + 25)

• sumOfDigitsSquared(199) should return 163 (i.e., 1**2 + 9**2 + 9**2 = 1 + 81 + 81)

Subtask II: Then, you’ll write a function isHappy(n: int) -> bool that takes as input a positive
number n and tests if n is happy. You may wish to use what you wrote in the previous subtask.

• isHappy(100) should return True
• isHappy(111) should return False
• isHappy(1234) should return False
• isHappy(989) should return True

(Did we tell you nmust be positive (i.e. at least 1)?)

4

Homework 4 Intro to Programming

IMPORTANT: Your isHappy function must not call itself.

Subtask III: There are in fact many levels of happiness. The larger the number, the happier we feel
about that number. The k-th happy number is the k-th smallest happy number. This means, the 1st
happy number is the smallest happy number, which is 1. The 2nd happy number is the second smallest
happy number, which is 7. Below is a list of the first few happy numbers:

1, 7, 10, 13, 19, 23, 28, 31, 32, 44, 49, 68, 70, 79, 82, 86, 91, 94, 97, 100, 103, 109, 129, 130, 133,
139, 167, 176, 188, 190, ...

Implement a function kThHappy(k: int) -> int that computes and returns the k-th happy num-
ber. For example:

• kThHappy(1) returns 1

• kThHappy(3) returns 10

• kThHappy(11) returns 49

• kThHappy(19) returns 97

TIP: Use what you have already written. Don’t repeat yourself.

Task 7: Sans Primes (12 points)

For this task, save your work in sansprimes.py

Remember that an integer n is prime if (i) n ≥ 2 and (ii) it is only divisible by 1 and n itself.

Subtask I: You will start by implementing a function is_prime(n: int) -> bool that returns True
if the number n is prime and False otherwise. For example:

• is_prime(1) should return False.

• is_prime(2) should return True.

• is_prime(-2) should return False.

• is_prime(5) should return True.

• is_prime(41) should return True.

• is_prime(323) should return False.

Subtask II: The thing is, many people believe prime numbers bring sadness and must be avoided. To
this end, you’ll write a function sans_primes(numbers: list[int]) -> list[int] that takes in a
list of integers and returns the numbers in the input list in the original order, except that every prime
number is banned, so it will be excluded and numbers that come immediately after a prime number
will also be excluded.

For example:

• sans_primes([1, 4, 9, 10]) should return [1, 4, 9, 10].

• sans_primes([1, 11, 9, 10, 17]) should return [1, 10].

• sans_primes([3, 10, 2, 8, 9, 4, 1, 7, 6, 5, 11]) should return [9, 4, 1].

• sans_primes([3, 1, 2, 4]) should return [].

• sans_primes([3, -2, 5, 7, 1, 42]) should return [42].

• sans_primes([1, 0, 3, 0, -2, 5, 7, 1, 42, 9]) should return [1, 0, -2, 42, 9].

5

	Alternating Sum (10 points)
	Power Loop (10 points)
	Draw, Let's Draw (10 points)
	Read Aloud (10 points)
	Multiples of K (10 points)
	Happy and Sad Numbers (12 points)
	Sans Primes (12 points)

