Homework 7 Intro to Programming (Term I11/2024-25)

built on 2025/07/02 at 16:42:53 due: sat jul 19 @ 11:59pm

This assignment will give you practice writing larger, more complex pieces of code. In this assign-
ment, you will solve a number of programming puzzles and hand them in.

Be sure to read this problem set thoroughly, especially the sections related to collaboration and
the hand-in procedure.

Probl File N
robiem tie Name Problem File Name
Overview: L. allperm.py 4, auction.py
2. cards.py 5 textcol
3. statspeak.py : il
Collaboration

We interpret collaboration very liberally. You may work with other students. However, each student
must write up and hand in his or her assignment separately. Let us repeat: You need to write your
own code. You must not look at or copy someone else’s code. You need to write up answers to written
problems individually. The fact that you can recreate the solution from memory will be taken as proof
that you actually understood it, and you may actually be interviewed about your answers.

Be sure to indicate who you have worked with (refer to the hand-in instructions).

Logistics

We're using a script to grade your submission before any human being looks at it. Sadly, the script is
not as forgiving as we are. So, make sure you follow the instructions strictly. It's a bad omen when the
course staff has to manually recover your file because the script doesn't like it. Hence:

 Save your work in a file as described in the task description. This will be different for each task.
Do not save your file(s) with names other than specified.

* Before handing anything in, you should thoroughly test everything you write.

* You will upload each file to our submission site https://assn.cs.muzoo.io/ before the due
date. Please use your SKY credentials to log into the submission site. Note that you can submit
multiple times but only the latest version will be graded.

* For some task, you will be able to verify your submission online. Please do so as it checks if your
solution is gradable or not. Passing verification does not mean that your solution is correct, but,
at least, it passes our preliminary check.

* At the beginning of each of your solution files, write down the number of hours (roughly) you
spent on that particular task, and the names of the people you collaborated with as comments.
As an example, each of your files should look like this:

Assignment XX, Task YY

Name: Eye Loveprograming

Collaborators: John Nonexistent
Time Spent: 4:00 hrs

. your real program continues here ...

* The course staff is here to help. We'll steer you toward solutions. Catch us in real-life or online
on Canvas discussion.

https://assn.cs.muzoo.io/

Homework 7 Intro to Programming

Task 1: The Set of All Permutations (10 points)

For this task, save your work in allperm.py

Remember the set data type? Well, you can look it up in Python’s documentation.

In this task, you willimplement a recursivefunction all_perm(n: int) -> set[tuple[int, ...]]
that takes an integer n> 0 and returns a set containing all the permutations of 1,2,3, ..., n. Each per-
mutation must be represented as a tuple. For example:

e all_perm(1) == {(1,)}
e all_perm(2) == {(1,2), (2,1)}
e all_perm(3) == {(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)}

Restrictions: Do not write a helper function. Your function must be recursive, and must work with
sets and tuples directly. You are not allowed to import anything.

Hints: Consider how we can use all_perm(2) to create the answer for all_perm(3). Perhaps the
following diagram will help (pay close attention to the color coding and numbers in boldface fonts):

all_perm(2) =={(1,2),(2, 1)}

all_perm(3) =={(3,1,2),(1,3,2),(1,2,3),(3,2,1),(2,3,1),(2,1,3)}

all_perm(4) =={(4,3,1,2),(3,4,1,2),(3,1,4,2),(3,1,2,4),
4,1,3,2),(1,4,3,2),(1,3,4,2),(1,3,2,4),
4,1,2,3),(1,4,2,3),(1,2,4,3),(1,2,3,4),
4,3,2,1),(3,4,2,1),(3,2,4,1),(3,2,1,4),

’

}

Task 2: House of Cards (40 points)

For this task, save your work in cards . py

You will experiment with playing cards. The standard deck of cards has 52 playing cards, divided into
4 suits—clubs (&), diamonds (¢), hearts (#), and spades (#). Each suit separately has 13 cards of ranks
A (Ace), 2,3,4,5,6,7,8,9, 10, J (Jack), Q (Queen), K (King).

Throughout this problem, you are not allowed to import other modules. Please take into considera-
tion performance expectations described at the end of this problem.

How to Represent Cards? To keep things simple, we'll represent a card using a tuple of length 2,
indicating first the suit then its rank. The suit is always denoted as a string:

"Club", "Diamond", "Heart", "Spade".
And likewise, the rank is always denoted as a string:
IIAII’IIZII’ l|3|l, A IIJII’ IIQII’ IIKII.

For example, the card 34 will be represented as ("Diamond", "3").

Homework 7 Intro to Programming

Subtask I: Now that you can represent cards, you'll attempt to represent poker hands. Poker is one
of the most played card games in the world. In poker, a player constructs hands of playing cards. For
the purpose of this problem, a hand has exactly 5 cards. These hands can be compared using a ranking
system, and the player who has the highest-ranking hand wins that deal.

Individual cards are ordered by their ranks: A (highest), K, Q, J, 10,9, 8,7, 6, 5, 4, 3, 2 (lowest). The Ace
card is special. While it is normally the highest-ranked card, in a hand involving 5,4, 3,2, A, it takes the
place of the lowest card (has rank 1 in this particular case). You can learn more from Wikipedia.

Poker Hand Representation: For this problem, a poker hand is represented as a set of 5 cards (each
card is represented as detailed previously). Hence, the type Hand is given by

Hand = set[tuple[str, str]]

You are to implement the following functions:

* The function is_straight_flush(h: Hand) -> bool returns a Boolean indicating whether
the hand h is a straight flush. A straight flush is a hand that contains five cards in sequence, all
of the same suit. Caution: The Ace can either be the highest or the lowest in the sequence. For
example:

5M,46,30,286, Ad Av Ke Qe,Jv 10v 109,99, 89 79 G¥

* The function is_four_of_a_kind(h: Hand) -> bool returns a Boolean indicating whether
the hand h is a four of a kind. Four of a kind is a poker hand that contains all four cards of one
rank and any other card. For example, 3&,3é,3¢,3%,Jv.

e The function is_full_house(h: Hand) -> bool returns a Boolean indicating whether the
hand h is a full-house hand. A full house is a hand that contains three matching cards of one
rank and two matching cards of another rank. For example, 4¢,46,44,7%,7&.

e Thefunctionis_two_pair(h: Hand) -> bool returns a Boolean indicating whether the hand
h is a two-pair hand. A two pair contains two cards of the same rank, plus two cards of another
rank (that match each other but not the first pair), plus any card not of the ranks of the former
two. For example, 99,9, 44,4, 10e.

To use the type Hand discussed above, your code should like the following:

near the top of the file but above all the functions
Hand = set[tuple[str, str]]

write all your functions. for example,
def is_four_of_a_kind(h: Hand) -> bool:

Subtask II: Of course, different poker hands have different likelihood of occurring—some are harder
than others. For this goal, we're going to write functions to enumerate all possible poker hands and
classify them into different kinds of hands. Your program must generate these lists—don’t just precre-
ate and return them.

1. Implement a function all_hands() -> List[Hand] that takes no arguments and returns a list of
all possible 5-card hands. Did we mention the five cards are distinct? (Hint: Your list should have
size (552) =2,598,960.) The use of five nested for-loops is strongly frowned upon.

2. Implement a function all_straight_flush() -> List[Hand] that takes no arguments and re-
turns a list of all possible 5-card hands that are straight flush. (Hint: Your list should have size 40.)

Homework 7 Intro to Programming

3. Implement a function all_four_of_a_kind() -> List[Hand] that takes no arguments and re-
turns a list of all possible 5-card hands that are four of a kind. (Hint: Your list should have size
624.)

4. Implement a function all_full_house() -> List[Hand] that takes no arguments and returns
a list of all possible 5-card hands that are full house. (Hint: Your list should have size 3,744.)

5. Implement a function all_two_pair() -> List[Hand] that takes no arguments and returns a
list of all possible 5-card hands that are two pair. (Hint: Your list should have size 123,552.)

Performance Expectations: For Subtask I, each function should finish instantaneously (i.e., using
< 0.1 seconds). For Task II, running all these functions from start to finish should take < 30 seconds.

Task 3: Statistically Speaking (15 points)

For this task, save your work in statspeak.py

As we have seen in lecture, a class provides a means to make code and data live (conceptually) in the
same place. For this task, you'llimplement a class DataFrame that maintains a collection of data items
inside self. items, which you keep as a list of floats, and provides the following operations:

1. Upon creation (remember that __init__ function?), the collection is empty.

2. Aclassmethoddef add(self, x) will add either x or the members of x to the list self.items.
Here x is one of the following: (1) a number, (2) a list, or (3) a tuple. If x is a number, it is added
to the list directly. If x is a list or a tuple, its members are individually added to the list.

3. A class method mean(self) will compute and return the mean of the data maintained in the
collection.

4. A class method percentile(self, r) will compute and return the value at the r-th percentile
of the data in the collection, where r is an integer in [0, 100) (i.e., excluding 100 but including 0).
For this problem, this is the value at the position L(Wro) ¢| (counting from 0) in the sorted list of
values, where ¢ is the size of the collection. As an example, for the data collection [4,2,8,7,3,1,5],
the 98-th percentile value is 8 because the collection once sorted s [1,2,3,4,5,7,8] and | (1) £] =
[0.98 x 7] = 6. You may find the built-in function sorted useful.

5. A class method mode (self) will compute and return the mode of the data. The mode of the
data is the item that appears the most often in the dataset (i.e., has the highest frequency). If
many items have the same highest frequency, your function can return any one of them.

6. Aclass method sd(self) will compute and return the standard deviation of the data. If the data
items are xo, X1, ..., XN_1, use the formula

where N is the number of data items in your collection and X is the mean of the data.

When these methods are called, it is possible that they are interleaved. For example, call add, followed
by another add, then mean, then a couple more add’s. It is, however, guaranteed that the collection will
not be empty when your code is asked to report a statistic.

Task 4: Auction House (30 points)

For this task, save your work in auction.py

This problem contains several subtasks. Your goal for this problem is to develop some classes to model
operations at an electronic auction house and use them to analyze auction data.

Homework 7 Intro to Programming

At an auction house, several auctions can take place at the same time. For each auction, there are
bidders who bid in that auction. Every bid raises the price of the auction to a higher value and the
highest bidder—i.e., the bidder who gives the highest bid value—wins that auction.

In this problem, you will capture this concept in two classes: Bid and Auction.

SubtaskI: You will implement two classes Bid and Auction. The details are as follows:

To keep things simple, each bid contains 3 attributes:

e bid_id: the identifer for this bid;
¢ bidder_id: the identifer of this bidder; and
¢ auction: the identifer of this auction.

Notice that bid_id is a unique identifier (think of a ticket) used to identify a bid whereas bidder_id
identifies the person who made this made.

Details about your Bid class: Your Bid class
* can be instantiated viaBid(bid_id, bidder_id, auction), for example,
bidtest = Bid(l, '8dac2b', 'ewmzr')

 provides the following access to data: If b is a Bid instance, then b.bid_id, b.bidder_id, and
b.auction store this bid’s bid_id, bidder_id, and auction, respectively.

* has appropriate __str__ and __repr__ methods that show this bid’s information. We do not
specify the format.

* supports comparison using <, >, <, =, ==: two bids are compared exclusively by theirbid_id. As
an example, a bid with bid_id = 3 is (strictly) smaller than a bid with bid_id= 11.

Auction Rules. A bidder (a person as determined by a bidder_id) can participate in many auctions.
The bids are made in the order of bid_id—that is, the bid with bid_id=0 is the first bid made, then the
bid with bid_id=1 is next, and so on. We'll assume that every auction starts at $1 and each bid after
that raises the price of that particular auction by $1.5. This means, the first bidder for an auction ends
up placing a bid of 1+ 1.5 = $2.5. Note that the bidders don’t get to call how much they’re bidding—the
auction value just goes up automatically by $1.5.

The winner of an auction is the person who participated in that auction and placed the highest bid.

We'll model an auction as a class called Auction. Each auction is identified by an auction identifier.
The class has the following features:

e Tt can be created via Auction(auction), for example,
bidtest = Auction('ewmzr')

creates an instance of Auction with auction identifer ' ewmzr'.

* The method placeBid(bidder_id) reflects the action of the bidder with bidder_id placing a
bid on this auction. Thatis to say, if ais an Auctioninstance, the callto a.placeBid(bidder_id)
places a bid from bidder with bidder_id.

e If a is an Auction instance, then a.price is the current price of this auction, and a.winner
is the current winner of this auction. Before anyone places a bid, a.winner is, by convention,
None.

You have now completed the class creation/modeling part. Our next step is to analyze a dataset.

Subtask II: An auction dataset is stored in a file, kept in the CSV format (CSV stands for comma-
separated values; read more about CSV online). The first line of such a file contains the names of the
fields. Subsequent lines are bids from an auction house. Each bid (a row in the file) contains the fields
described earlier, among others. For example, consider the following excerpt:

Homework 7 Intro to Programming

bid_id,bidder_id,auction,merchandise,device,time,country,ip,url
0,8dac2b, ewmzr, jewelry,phone®,9759243157894736,us,69.166.231.58,vasstdc27m7nks3
1,668d39, aeqok, furniture,phonel, 9759243157894736,in,50.201.125.84, jmgqlhflrzwuay9c

The 1st line is the “header” line, which lists all the fields. The 2nd line shows a bid with bid_id = 0.
The person who made this bid has bidder_id = '8dac2b’', and the bid is for the auction 'ewmzr'.

For this subtask, you will implement a function CSV2List (csvFilename: str) -> list[Bid] which

* takes as input a file name; and
e returns a list of Bid instances ordered by their bid_id, from small to large.

Keep in mind that the input file may not list the bids in the right bid_id order. You will need to reorder
them.

Hint #1: How does sorted or list.sort interact with your custom-made comparison above?

Hint #2: import . It’s not fast but it understands CSV.

Subtask III: In the final subtask, you will implement the following two functions to analyze the bids:

* a function mostPopularAuction(bidList: list[Bid]) -> set[str] takes in alist of Bid
instances (for example, as what you would get from CSV2List above) and returns a set of iden-
tifiers (each a string) of the most popular auction(s). The most popular auction is defined as the
auction that has the most distinct number of bidders. There may be multiple auctions with the
same number of bidders.

e afunction auctionWinners(bidList: list[Bid]) -> dict[str, Auction] takes in alist
of Bid instances (same as above) and returns a dictionary with the following property:

If d is the resulting dictionary and a is an auction identifier, then d[a] is an Auction
instance that reflects the state of this auction (the auction with identifier a) after going
through all the bids.

Other Things:

* We're testing your program with datasets that contain up to 1 million rows (and 20MB in size).
* On such datasets, we expect each of your functions to run within 15 seconds.
* There will be sample input/output files on the course website.

Task 5: EXTRA: Text-based Newspaper Columns (0 points)

For this task, save your work in textcol.py

READ THIS BEFORE YOU ATTEMPT IT: This is an extra problem for those who want a more challeng-
ing task. It is worth 0 points on the assignment; however, you'll earn

* bragging rights;

 aplace on the course’s wall of fame;

* brownie points that may be exchanged for real points if needed at the end; and
 above all, an opportunity to practice programming.

This problem is inspired by and adapted from a reddit challenge (credit to Challenge #225). In the old
days, graphical interface wasn't even available and text interface was the norm. But programmers were
able to accomplish many higher art forms using just text. We're going to explore newspaper columns
rendered completely in text. Now column-style writing often puts images and features to the left or
right of the body of text, for example (quotation marks only shown to indicate where the lines begin
and end):

Homework 7 Intro to Programming

"This is an example piece of text. This is an exam-"
"ple piece of text. This is an example piece of"
"text. This is an example"

"piece of text. This is a +---———----=———————————- +
"sample for a challenge. |

"Lorum ipsum dolor sit a- | top class | "
"met and other words. The | feature

"proper word for a layout |

"like this would be type- +---———------———————————— +
"setting, or so I would"

"imagine, but for now let's carry on calling it an"
"example piece of text. Hold up - the end of the"
paragraph is approaching - notice"

M- + the double line break for a para-"
n | graph."

" |l'

" feature And so begins the start of the"

I
bonanza | second paragraph but as you can"
| see it's only marginally better"
| than the other one so you've not"
B ettt + really gained much - sorry. I am"
certainly not a budding author"
"as you can see from this example input. Perhaps I"

"need to work on my writing skills."

Some words overfill the column and end up get- o +
ting hyphenated. For this task, you will assume
that any hyphens at the end of a line join a sin-
gle unhyphenated word together (for example, the

I I

| |

I I

. . | +---mmmmmmm oo +

exam- and ple in the above input form the word | ||
example and not exam-ple). However, hyphenated || Outside ||
words that do not span multiple lines should re- | |
tain their hyphens. | dmmmmmmmmm e + |
Additionally, side features will only appear at the Jlr JL

far left or right of the input, and will always be bor-
dered by the +---+ style shown above. They will
also never have “holes” in them, so the situation
on the right will never happen.

Paragraphs in the input are separated by double line breaks.

Your Task: You'llimplement a class TextColumn that has the following properties:

* An instance of TextColumn can be created with TextColumn(lines), where lines a list of strings,
each string representing a line. Internal bookkeeping is up to you as long as you provide the
functionality stated.

e Ifcisaninstance of TextColumn, then c.paragraphs() will return alist of strings, each represent-
ing a paragraph in the given string. The text of a paragraph will flow smoothly—words that were
split across lines through hyphenation will be joined back. Importantly, the paragraphs have to
be listed in the order that they appear (from top to bottom).

For instance, the text in the above example would result in the following list (we artificially added
— to indicate line breaks due to typesetting limitations):

["This.is.an.example_piece_of_ text._This_is.an._example piece._of text._ This, is._an.
—example _piece_of_text._This. is.an_example piece_.of_text._This.is.a.sample..
—for_a.challenge. Lorum_ipsum_.dolor.sit.amet.and._other words. _ The _proper..

Homework 7 Intro to Programming

—word._for_a_layout_like this, would_be_typesetting,_or._so_I_would_ imagine,.
—but_for_now_let's_carry_on_.calling_it._an_example _piece_of_ text. Hold_ up.-.
—the_end_of _the_paragraph.is.approaching..-.notice_the_double _line_break.for.
—a,paragraph.",

"And._so_begins, . the_start._of._the_second_paragraph. but._as_you.can._ see_it's._only.
—marginally better_than_the other_one._so.you've_not.really. gained_much. -.
—sorry._I.am certainly_not._.a_budding._author.as.you._can_see_from_ this_example,.
—input. _Perhaps.I_need_to_work_ on_my_writing.skills."]

e Ifcisaninstance of TextColumn, then c. features() will return a list of strings, each representing
a feature text in the given input. Features are side features described above. The features can
follow any order of your liking as long as the list contains all the text inside the features (with
trailing white spaces removed). For the above example, the list will be

["top class feature", "feature bonanza"]

	The Set of All Permutations (10 points)
	House of Cards (40 points)
	Statistically Speaking (15 points)
	Auction House (30 points)
	EXTRA: Text-based Newspaper Columns (0 points)

